Impact of Parasitics on Performance
With improvements in switching figure of merit provided by eGaN FETs, the packaging and PCB layout parasitics are critical to high performance.
This white paper will study the effect of parasitic inductance on performance for eGaN FET and MOSFET based point of load (POL) buck converters operating at a switching frequency of 1 MHz, an input voltage of 12 V, an output voltage of 1.2 V, and an output current up to 20 A.
Download to find out more.
Read More
By submitting this form you agree to Efficient Power Conversion Corporation (EPC) contacting you with marketing-related emails or by telephone. You may unsubscribe at any time. Efficient Power Conversion Corporation (EPC) web sites and communications are subject to their Privacy Notice.
By requesting this resource you agree to our terms of use. All data is protected by our Privacy Notice. If you have any further questions please email dataprotection@techpublishhub.com
Related Categories: Capacitors, Power
More resources from Efficient Power Conversion Corporation (EPC)
Benchmark DC-DC Conversion Efficiency with eGaN FET-Based Buck Converters
For applications requiring high power density and high power, but not requiring electrical isolation, the buck converter has been the workhorse top...
Improve DC-DC Flyback Converter Efficiency Using eGaN FETs
DC-DC converter designers can achieve low cost at low power densities by using flyback converters and enhancement mode gallium nitride transistors....
Selecting eGaN® FET Optimal On-Resistance
Previously published articles showed that eGaN FETs behave for the most part just like silicon devices and can be evaluated using similar performan...